

Create Simple GUI Applications
Sample

Martin Fitzpatrick

Sample

Table of Contents
Introduction . Ê1

Book format . Ê1

Qt and PyQt . Ê1

Python 3 . Ê2

The complete book . Ê3

Basic PyQt Features . Ê4

My first Application . Ê4

Widgets . Ê9

What next? . Ê27

Resources . Ê28

Tutorials . Ê28

Documentation . Ê28

Icon sets . Ê28

Acknowledgements . Ê29

Copyright . Ê30

Introduction
Welcome to Creating Simple GUI Applications where we will discover how to use Python and Qt
to do just that.

If you want to learn how to write GUI applications with Python it can be tricky to get started. There
are a lot of new concepts you need to understand to get anything to work. But, like any code, writing
GUI applications requires you to learn to think about the problem in the right way.

In this book I will give you everything that you need to start building functional applications with
the PyQt framework. In no time at all you will have a fully functional Qt application - ready to
customise as you like.

If you bought this book you will have received a full copy of the source code and resources with it.
But donÕt just copy and paste and move on Ñ you will learn much more if you experiment along the
way! All the code is MIT licensed, meaning you are free to mix and match into your own projects.

Book format
This book is formatted as a series of coding exercises and snippets to allow you to gradually explore
and learn the details of PyQt5. However, it is not possible to give you a complete overview of the Qt
system in a book of this size.

If you find yourself thinking "I wonder if I can do that " the best thing you can do is put this book
down, then go and find out! Just keep regular backups of your code along the way so you always
have something to come back to if you royally mess it up.

!
Throughout this books there are also boxes like this, giving info, tips and
warnings. All of them can be safely skipped over if you are in a hurry, but reading
them will give you a deeper and more rounded knowledge of the Qt framework.

Qt and PyQt
When you write applications using PyQt what you area really doing is writing applications in Qt.
The PyQt library is simply. [1: Not really that simple.] a wrapper around the C++ Qt library, to allow
it to be used in Python.

Because this is a Python interface to a C++ library the naming conventions used within PyQt do not
adhere to PEP8 standards. Most notably functions and variables are named using mixedCase rather
than snake_case. Whether you adhere to this standard in your own applications based on PyQt is
entirely up to you, however I find it to follow Python standards for my own code, to help clarify
where the PyQt code ends and your own begins.

Further, while there is PyQt specific documentation available, you will often find yourself reading
the Qt documentation itself as it is more complete. If you do you will need to translate object syntax
and some methods containining Python-reserved function names as follows:

1

Qt PyQt

Qt::SomeValue Qt.SomeValue

object.exec() object.exec_()

object.print() object.print_()

The books is written and updated to work with the current latest version of Qt (and PyQt). As of
writing this is Qt 5.10. However, many of the examples will work fine with earlier versions of Qt. If
you are still using PyQt 4 you will need to change the imports.

Python 3
This book is written to be compatible with Python 3.4+. Python 3 is the future of the language, and if
youÕre starting out now is where you should be focusing your efforts. However, in recognition of
the fact that many people are stuck supporting or developing on legacy systems, the examples and
code used in this book are also tested and confirmed to work on Python 2.7. Any notable
incompatiblities or gotchas will be flagged with a meh-face to accurately portray the sentiment e.g.

" In Python 2.7 map() returns a list .

If you are using Python 3 you can safely ignore their indifferent gaze.

2

The complete book
Thankyou for downloading this sample of Create Simple GUI Applications.

If you like what you see you can purchase the complete book, together with a optional video course,
at: https://martinfitzpatrick.name/create-simple-gui-applications

! Use the code SAMPLE50X4JK to get a 50% discount on any book or course.

The full book covers many more aspects of developing with PyQt, from getting started with the Qt
Creator to multithreading advanced applications. All purchases come with free updates as the book
is developed and expands.

For up-to-date tutorials, tips and code samples, you can also check out my website at
https://martinfitzpatrick.name/

3

https://martinfitzpatrick.name/create-simple-gui-applications
https://martinfitzpatrick.name/

Basic PyQt Features

My first Application
Welcome to your first steps in create graphical applications! In this chapter you will be introduced
to the key basic features of Qt (PyQt) that you will find yourself using in any applications you
create. We will develop a a application, adding (and removing) features step-by-step so you get to
see how everything works. Use the code given as your guide, but feel free to experiment.

So, letÕs get started by creating our very first windowed application. Before getting the window on
the screen, there are a few key concepts to introduce about how applications are organised in the
Qt world. If youÕre already familiar with event loops you can safely skip to the next section.

The Event loop and QApplication

The core of every Qt Applications is the QApplication class. Every application needs one Ñ and only
one Ñ QApplication object to function. This object holds the event loop of your application Ñ the
core loop which governs all user interaction with the GUI.

Each interaction with your application Ñ whether a press of a key, click of a mouse, or mouse
movement Ñ generates an event which is placed on the event queue. In the event loop, the queue is
checked on each iteration and if a waiting event is found, the event and control is passed to the
specific event handler for the event. The event handler deals with the event, then passes control
back to the event loop to wait for more events. There is only one running event loop per
application.

!

The QApplication class

¥ QApplication holds the Qt event loop

¥ One QApplication instance required

¥ You application sits waiting in the event loop until an action is taken

¥ There is only one event loop

Creating your App

So, letÕs create your first application! To start create a new Python file Ñ you can call it whatever
you like (e.g. MyApp.py).

#
WeÕll be editing within this file as we go along, and you may want to come back to
earlier versions of your code, so remember to keep regular backups along the
way. For example, after each section save a file named MyApp_<section>.py

The source code for your very first application is shown below. Type it in verbatim, and be careful
not to make mistakes. If you do mess up, Python will let you know whatÕs wrong. If you donÕt feel
like typing it all in, you will have received a copy of the source code when you bought this book.

4

from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from PyQt5.QtGui import *

Only needed for access to command line arguments
import sys

You need one (and only one) QApplication instance per application.
Pass in sys.argv to allow command line arguments for your app.
If you know you won't use command line arguments QApplication([]) works too.
app = QApplication (sys. argv)

Start the event loop.
app. exec_()

Your application won't reach here until you exit and the event
loop has stopped.

We can go through the code line by line.

We start by importing the PyQt5 classes that we need for the application, from the QtWidgets, QtGui
and QtCore submodules.

!
This kind of global import from <module> import * is generally frowned upon in
Python. However, in this case we know that the PyQt classnames donÕt conflict
with one another, or with Python itself. Importing them all saves a lot of typing,
and helps with PyQt4 compatibility.

Next we create an instance of QApplication , passing in sys.arg (which contains command line
arguments). This allows us to pass command line arguments to our application. If you know you
wonÕt be accepting command line arguments you can pass in an empty list instead, e.g.

app = QApplication ([])

Finally, we call app.exec_() to start up the event loop.

!
The underscore is there because exec is a reserved word in Python and canÕt be
used as a function name. PyQt5 handles this by appending an underscore to the
name used in the C++ library. YouÕll also see it for .print_() .

Now, letÕs launch your application. You can run it from the command line like any other Python
script, for example:

python MyApp.py

5

Or, for Python 3:

python3 MyApp.py

The application should run without errors, yet there will be no indication of anything happening,
aside from perhaps a busy indicator. This is completely normal Ñ we havenÕt told Qt to create a
window yet!

Every application needs at least one QMainWindow, though you can have more than one if you ned to.
However, no matter how many you have, your application will always exit when the last main
window is closed.

LetÕs add a QMainWindow to our application.

from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from PyQt5.QtGui import *

import sys

app = QApplication (sys. argv)

window = QMainWindow()
window. show() # IMPORTANT!!!!! Windows are hidden by default.

Start the event loop.
app. exec_()

6

!
The QMainWindow class

¥ Main focus for user of your application

¥ Every application needs at least one (Ébut can have more)

¥ Application will exit when last main window is closed

If you launch the application you should now see your main window. Notice that Qt automatically
creates a window with the normal window decorations, and you can drag it around and resize it
like any normal window.

$
I canÕt see my window!

You must always call .show() on a newly created QMainWindow as they are created
invisible by default.

Congratulations Ñ youÕve created your first Qt application! ItÕs not very interesting at the moment,
so we should add some content.

If you want to create a custom window, the best approach is to subclass QMainWindow and then
include the setup for the window in the __init__ block. This allows the window behaviour to be self
contained. We can add our own subclass of QMainWindow Ñ call it MainWindow to keep things simple.

7

from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from PyQt5.QtGui import *

import sys

Subclass QMainWindow to customise your application's main window
class MainWindow(QMainWindow) :

Ê def __init__ (self , *args, ** kwargs) :
Ê super(MainWindow, self) . __init__ (*args, ** kwargs)

Ê self . setWindowTitle (" My Awesome App")

Ê label = QLabel(" THIS IS AWESOME!!!")

Ê # The `Qt` namespace has a lot of attributes to customise
Ê # widgets. See: http://doc.qt.io/qt-5/qt.html
Ê label . setAlignment (Qt. AlignCenter)

Ê # Set the central widget of the Window. Widget will expand
Ê # to take up all the space in the window by default.
Ê self . setCentralWidget (label)

app = QApplication (sys. argv)

window = MainWindow()
window. show()

app. exec_()

Notice how we write the __init__ block with a small bit of boilerplate to take the arguments (none
currently) and pass them up to the __init__ of the parent QMainWindow class.

! When you subclass a Qt class you must always call the super __init__ function to
allow Qt to set up the object.

Next we use .setWindowTitle() to change the title of our main window.

Then we add our first widget Ñ a QLabel Ñ to the middle of the window. This is one of the simplest
widgets available in Qt. You create the object by passing in the text that you want the widget to
display.

We set the alignment of the widget to the center, so it will show up inin the middle of the window.

8

!
The Qt namespace (Qt.) is full of all sorts of attributes that you can use to
customise and control Qt widgets. WeÕll cover that a bit more later, but itÕs worth
a look .

Finally, we call .setCentralWidget() on the the window. This is a QMainWindow specific function that
allows you to set the widget that goes in the middle of the window.

If you launch your application you should see your window again, but this time with the QLabel
widget in the middle.

!
Hungry for widgets?

WeÕll cover more widgets in detail shortly but if youÕre impatient and would like
to jump ahead you can take a look at the QWidget documentation . Try adding the
different widgets to your window!

In this section weÕve covered the QApplication class, the QMainWindow class, the event loop and
experimented with adding a simple widget to a window. In the next section weÕll take a look at the
mechanisms Qt provides for widgets and windows to communicate with one another and your own
code.

Save a copy of your file as MyApp_window.py as weÕll need it again later.

Widgets
In Qt (and most User Interfaces) ÔwidgetÕ is the name given to a component of the UI that the user
can interact with. User interfaces are made up of multiple widgets, arranged within the window.

Qt comes with a large selection of widgets available, and even allows you to create your own
custom and customised widgets.

! Load up a fresh copy of MyApp_window.py and save it under a new name for this
section.

Big ol' list of widgets

A full list of widgets is available on the Qt documentation. But lets have a look at them quickly.

9

http://doc.qt.io/qt-5/qt.html
http://doc.qt.io/qt-5/qt.html
http://doc.qt.io/qt-5/widget-classes.html#basic-widget-classes

from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from PyQt5.QtGui import *

Only needed for access to command line arguments
import sys

Subclass QMainWindow to customise your application's main window
class MainWindow(QMainWindow) :

Ê def __init__ (self , *args, ** kwargs) :
Ê super(MainWindow, self) . __init__ (*args, ** kwargs)

Ê self . setWindowTitle (" My Awesome App")

Ê layout = QVBoxLayout()
Ê widgets = [QCheckBox,
Ê QComboBox,
Ê QDateEdit,
Ê QDateTimeEdit,
Ê QDial,
Ê QDoubleSpinBox,
Ê QFontComboBox,
Ê QLCDNumber,
Ê QLabel,
Ê QLineEdit ,
Ê QProgressBar,
Ê QPushButton,
Ê QRadioButton,
Ê QSlider ,
Ê QSpinBox,
Ê QTimeEdit]

Ê for w in widgets:
Ê layout . addWidget(w())

Ê widget = QWidget()
Ê widget . setLayout (layout)

Ê # Set the central widget of the Window. Widget will expand
Ê # to take up all the space in the window by default.
Ê self . setCentralWidget (widget)

You need one (and only one) QApplication instance per application.
Pass in sys.argv to allow command line arguments for your app.
If you know you won't use command line arguments QApplication([]) works too.

10

app = QApplication (sys. argv)

window = MainWindow()
window. show() # IMPORTANT!!!!! Windows are hidden by default.

Start the event loop.
app. exec_()

Your application won't reach here until you exit and the event
loop has stopped.

11

To do this weÕre going to take the skeleton of our application and replace the QLabel with a QWidget.
This is the generic form of a Qt widget.

Here weÕre not using it directly. We apply a list of widgets - in a layout, which we will cover shortly -
and then add the QWidget as the central widget for the window. The result is that we fill the window
with widgets, with the QWidget acting as a container.

!

Compound widgets

Note that itÕs possible to use this QWidget layout trick to create custom compound
widgets. For example you can take a base QWidget and overlay a layout containing
multiple widgets of different types. This 'widget' can then be inserted into other
layouts as normal. WeÕll cover custom widgets in more detail later.

Lets have a look at all the example widgets, from top to bottom:

Widget What it does

QCheckbox A checkbox

QComboBox A dropdown list box

QDateEdit For editing dates and datetimes

QDateTimeEdit For editing dates and datetimes

QDial Rotateable dial

QDoubleSpinbox A number spinner for floats

QFontComboBox A list of fonts

QLCDNumber A quite ugly LCD display

QLabel Just a label, not interactive

QLineEdit Enter a line of text

QProgressBar A progress bar

QPushButton A button

QRadioButton A toggle set, with only one active item

QSlider A slider

QSpinBox An integer spinner

QTimeEdit For editing times

There are actually more widgets than this, but they donÕt fit so well! You can see them all by
checking the documentation. Here weÕre going to take a closer look at the a subset of the most
useful.

12

